
Renormalisation on symmetric fractals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1984 J. Phys. A: Math. Gen. 17 L783

(http://iopscience.iop.org/0305-4470/17/14/011)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 18:12

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/17/14
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math Gen. 17 (1984) L783-L789. Printed in Great Britain 

LElTER TO THE EDITOR 

Renormalisation on symmetric fractals 

R Hilfer and A Blumen 
Lehrstuhl fur Theoretische Chemie, Technische Universitat Munchen, Lichtenbergstrasse 
4, 8046 Garching, West Germany 

Received 9 July 1984 

Abstract. We introduce and investigate new classes of Sierpinski-type fractals. We deter- 
mine their fractal and spectral dimensions using renormalisation procedures and, for 
particular classes, we give these dimensions in closed form. The spectral dimensions densely 
fill the interval [1,2], allowing us to choose flexibly models for applications. 

The importance of dilatational invariance as a physical symmetry principle has been 
well recognised since the introduction of scaling and renormalisation methods in the 
study of critical phenomena. In the area of condensed matter physics it was suggested 
that many disordered structures are dilatationally invariant (Mandelbrot 1982). 
Examples for such structures, called fractals, are linear and branched polymers (Havlin 
and Ben Avraham 1982), amorphous and porous materials (Pfeifer and Avnir 1983, 
Even et a1 1984), epoxy resins (Alexander et al 1983), diffusion limited aggregates 
(Witten and Sander 1981) and percolation clusters at criticality (Gefen et a1 1981, 
Mandelbrot 1982, Alexander and Orbach 1982). According to the way in which matter 
and voids are distributed these fractals can be viewed as stochastic. 

On the other hand there exist deterministic fractals in which the distribution of 
sites is determined by an unambiguous, non-random prescription. Examples for such 
structures are the Sierpinski gaskets (Urysohn 1927) and their extensions (Dhar 1977, 
Hilfer and Blumen 1984). Evidently, the deterministic prescriptions standardise the 
fractals and make them very useful as model systems. Hence many recent analyses 
have centred on Sierpinski type fractals (Dhar 1977, 1978, Gefen et a1 1980, 1984, 
Alexander and Orbach 1982, Rammal and Toulouse 1983, Blumen et a1 1983, Given 
and Mandelbrot 1983, Klafter et a1 1984, Zumofen et a1 1984). 

Fractals are described by (at least) three distinct dimensions: the spatial dimension 
d of the embedding Euclidean space, the fractal dimension 3 which is connected to 
the density of sites and the spectral (fracton) dimension d, related to dynamical 
processes on the fractal (vide infra). It should be emphasised that d and d" are amenable 
to experimental observation (Dhar 1977, Alexander et al 1983, Mandelbrot 1982): 
recent measurements of the electronic energy transfer allow us to determine these 
dimensions with high accuracy (Klafter and Blumen 1984, Even et a1 1984). For 
modelling purpose_s it then becomes desirable to construct deterministic fractals with 
prescribed d and d values. 

In a recent work (Hilfer and Blumen 1984), hereafter denoted by I, we considered 
Sierpinski-type structures, obtained by using a large class of generators (vide infra). 
The spectral dimensions d' for these structures lie between that of a 2~ Sierpinski 
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gasket, dS=21n3/ln5 = 1.36 and the value 2. In this letter we extend this study by 
constructing additional classes of fractals, whose d' are dense in the interval [ 1,2], i.e. 
which approach any value to given accuracy. Our main concern is the region below 
&, since in the neighbourhood of 1 scaling effects and long-time tails in energy decay 
are most pronounced (Klafter et al 1984, Zumofen et al 1984). 

Sierpinski-type fractals may be built iteratively from a generator G. Here we take 
as generators d-dimensional hypertetrahedrons ( HT) of sidelength b. A particular 
generator G = G(b, d )  is obtained by filling such a HT with smaller HTS of unit 
sidelength. We. restrict ourselves to generators which have tetrahedral symmetry and 
which furthermore form connected graphs. Figure 1 displays four examples for allowed 
G( 14,2). In I we have analysed generators of type A, whereas here we extend our 
study to all symmetric G. 

From G the fractal is iteratively constructed: The structure at stage n + 1 is obtained 
by enlarging G by b" and then filling all upward pointing HTS with the stage-n structure. 
Figure 2 depicts the first step of the iteration for a particular G(5,2) of type C. 

Figure 1. Various symmetric tetrahedral generators for d = 2 and b = 14. 

A 
Figure 2. One step in the iterative construction of the fractal. 
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Let us first focus on the fractal dimension 4 which is related to the density of sites. 
The fractal dimension mirrors geometrical properties of the lattice and can be monitored 
experimentally through the direct energy transfer (Wafter and Blumen 1984, Even et 
a1 1984); it is given through 

bd = lim N (  n + l ) / N ( n )  
n+w 

where N ( n )  is the number of sites of the structure at stage n. Here the N ( n )  fulfil 
the recursion relation 

N (  n + 1)  = N (  1)  + N [ N (  n) - ( d  + l ) ]  (2) 

where N is the number of small HTS inside G. Therefore 

d = In N/In b. (3) 

We further remark that E ( n )  the number of edges of the structure at stage n obeys: 

E(n +1) = N E ( n )  (4) 

which, in conjunction with (3), allows to express d through E ( n ) .  
The spectral ([racton) dimension d’ governs dynamical properties. First introduced 

by Dhar (1977), d gives the low-frequency behaviour of the density of normal modes, 
p ( w )  - wd-1 (Dhar 1977, Alexander and Orbach 1982, Rammal and Toulouse 1983). 
In the energy transfer case, d appears in the expressions for the indirect (multistep) 
transfer, where the energy performs a random walk on the fractal (Blu-men et al 1983, 
Klafter and Blumen 1984). Here we exemplify the determination of d for the fractal 
through a random walk model. Thus the probability P(ri,  t )  to find the walker at site 
ri at time t is governed by the master equation 

d - P(ri,  t )  = 
dr A i )  

[wGP(q ,  t )  - w,,P(ri, t ) ]  

where the sum runs over all rj that are nearest neighbours to ri and the wij are the 
transition probabilities per unit time from 5 to ri. Motivated by the correspondence 
to the discrete-time analogue, in which the walker steps at fixed times to one of the 
z(5) neighbours of the occupied site r> we specify the wG as in I through: 

z( 5 )  wij = w = constant. ( 6 )  

In general the coordination number z ( 5 )  is not constant over our lattices. In I, 
where generators G(b, d )  were completely filled with small HTS, we had 
min z ( 5 )  = 2d and max z ( 5 )  = Td, with r) = min (b, d + 1). The difference here is that 
most generators are only partly filled with small HTS, see e.g. figure 1. Therefore there 
are edges belonging to a single HT and for these z ( r j )  = d. 

This difference, however, does not affect the general renormalisation procedure for 
equation (9, which carries through exactly as in I. One considers the P(ri,  t )  values 
at longer times, when the situation inside each generator G appearing in the fractal 
is quasistationary. One iteration of the real-space renormalisation procedure consists 
in decimating all interior points of G and keeping only its comers; this decimation 
inverts the process by which the fractal was generated. Since in equation ( 5 )  the 
corners of G are coupled to their nearest neighbours, which are in general internal 
sites, and thus get decimated, one has to re-express these couplings in terms of comer 



L786 Letter to the Editor 

sites only. In the Laplace domain this expression is, equation (1.13) of I: 
d d 

C Q(di, U ) = d g ( a ) Q ( s o ,  ~ ) + h ( a )  C Q(si, U). 
i = l  i =  I 

(7)  

Here we set Q( r,, U )  = P (  r,, u)/z(  r , )  and the two sums extend over all nearest neighbours 
di of the corner so and over all other corners si of G, respectively. At long times, 
conservation of probability requires that P(s i ,  t )  renormalises to N P ( s ,  t ) ,  where N is 
again the number of small HTS inside G. The rates w renormalise to wh(O)/N,  where 
h(0)  stems from equation (7), and one has g(0) +h(O) = 1. In I we have related h ( 0 )  
to the renormalisation mapping #J’(O) = K = N/h(O)-the fractal Einstein relation of 
Given and Mandelbrot (1983)-so that the renormalised rate is W / K .  

We pause to note that these results hold for generators G with tetrahedral symmetry 
which form connected graphs. If the generator divides into disconnected pieces, then 
the random walker cannot explore the whole structure, but is confined to the connected- 
ness component of the starting site. The case that the comers are disconnected is 
uninteresting, since then h ( 0 )  =0,  because of symmetry. If the corners are connected 
to each other but parts of the graph are disconnected from the corners then equation 
(7) is non-trivial, but the HTS belonging to the disconnected islands do not affect the 
solution and should not be counted when establishing N. 

For the probability to be at the origin ro at long times (Alexander and Orbach 1982) 

P(ro ,  t )  - wtPd” (8) 

cl = 2 In N/ln K = 2(1-ln h(O)/ln NI-’.  

the spectral dimension d is obtained by renormalising both sides of equation (8) 

(9) 

To establish 2 according to equation (9) one has only to obtain h ( 0 )  or equivalently 
g(0). This may be done (see I, equation (10)) by inverting the matrix ( D  - A l )  which 
pertains to the interior sites di of G: Specifically, ( D ) , ,  = z(di) and A I  is the submatrix 
of the adjacency matrix A of G, obtained by eliminating all rows and columns of A 
which correspond to the comers of G. For connected generators the inverse exists 
and leads to a non-trivial form for equation (7), as can be demonstrated using the 
matrix-tree theorem of graph theory (Kirchhoff 1847, Harary 1969). From a close 
analysis we derive that g(0) 2 0 and h ( 0 )  2 0, relations which are intuitively clear, since 
one may view equation (7) as a way to express probabilities for the inner sites di in 
terms of weighted probabilities for the boundary sites of G. Since, as above, h ( 0 )  + 
g(0) = 1 we conclude that h(O), g(0) E [0, 13. Thus, from equation (9) it follows that 
for all our fractals d s 2. 

Instead of proceeding in a general way, we now consider generators of chainlike 
structure, as exemplified by the cases B and C of figure 1. Type B is obtained by 
placing small HTS only on the edges of the generator, whereas type C has its HTS 

mainly (but, for connectedness purposes, not exclusively) along the tetrahedral sym- 
metry axes. These structures are particularly useful: due to their chainlike form they 
allow us to obtain d values which are close to unity, an interesting region for asymptotic 
forms and scaling properties (Klafter et a1 1984, Zumofen et a1 1984, Anlauf 1984). 

The number of small HTS in a B-type d-dimensional generator of sidelength 6, 
G(6, d )  is 

(10) N = ( d  +1) (1  - d  + b d / 2 )  
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and thus, from equation (3): 

d = ln[(d + 1)( 1 - d + bd/2)]/ln b. (11) 

To calculate d‘ one may invert the ( D  - A l )  matrix. For the B-type generator it is, 
however, much more expedient to use the electric circuit analogy (Kirkpatrick 1973, 
Gefen et a1 1981), where the bonds are replaced by equal resistance; R and to perform 
a star-HT transformation to calculate the renormalised resistance R of G. In general 
the analogy also requires the sites to be grounded via site-dependent capacitors, but in 
the limit a -j 0 these capacitors can be neglected. 

We obtain 

k=R/h(O)=R[2(b-4) (d  + l ) + ( d  +3)’]/(d+l)’ 

and thus 

2 = 2 In [( d + 1 )( 1 - d + bd/2)]/ln{( d + l)-’( 1 - d + bd/2)[2( b - 4)( d + 1) + (d + 3)2]}. 
(12) 

Here we have assumed b a 5 ,  in order to have a truly B-type form. The cases b = 2  
and b = 4 generate the Sierpinski gaskets and b = 3 is identical to the A-type geneLator 
G(3, d). From equation (12) we thus have limb+.co d = 1 for fixed d and limd,, d = 2 
for b held fixed. Thus for B-type generators, the d’ span the [ l ,  2]-interval, whose 
boundaries are limit points of the d” set. 

For the C-type generator of figure 1, d = 2, we obtain 

d = ln[3( b - l)]/ln b (13) 

a value identical to equation ( 1  l ) ,  and, again with a star-HT transformation: 

2 = 2 ln[3( b - l)]/ln [5b( b - 1)/2]. (14) 

In order to display the range of values obtainable and the influence of the sidelength 
b of the generators, we give in table 1 several numerical values for B- and C-type 
generators of different dimensions. 

We present now a procedure to build generators G for more complex fractals. 
Starting from two generators G,(b, ,  d )  and G2(b2, d )  we construct GI2(blbZ, d )  by 

Table 1. Fractal (6 )  and spectral ( d )  dimensions for fractals obtained from the B- and 
C-type generators of figure 1 .  The generator side length is b and d is the embedding spatial 
dimension. 

Type B ( d  = 2) Type B ( d = 3 )  T y p e C ( d = 2 )  

b d d d d d d 

5 1.543 96 1.335 37 I .920 57 1.506 85 1.543 96 1.270 39 
8 1.46411 1.28485 1.773 98 1.436 54 1.464 1 1  1.232 19 

1 1  1.41841 1.25768 1.693 34 1.397 83 1.41841 1.211 09 
20 1.349 60 1.217 49 1.575 07 1.339 38 1.34960 1.17934 
50 1.27567 1.174 18 1.451 10 1.27488 1.27567 1.14458 

101 1.235 89 1.15053 1.385 36 1.23901 1.235 89 1.125 39 
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first enlarging GI by b2 and then inserting G2 into all the upward-pointing HTS. By 
construction G12 is again connected and symmetric and may be thus used to build a 
fractal. The generator of type D in figure 1 is an example: it was obtained from the 
Sierpinski gasket, generator G,(2,2),  and from a B-type generator, G2(7, 2). The 
building procedure may be used repeatedly, and leads after m steps to G1...,(b, d ) ,  
with b = b,  . . . b,. The number of HTS of unit length inside G ,... , is N = NI . . . N,, 
where Ni is the corresponding value for Gi. In the same way, repeated decimations 
of sites in G ,,,. , show that the coefficient K equals K~ . . . K,. Hence, for GI,, , , , :  

m 

6= In N i l :  In bi 
i = l  i = l  

and 

Each of the Gi leads to fractals with dimensions Ji and (ii. Relations (15) and (16) 
allow us now to obtain intermediate values in these ranges, and to adjust d or d' to 
preassigned values with high accuracy. 

To summarise, we have introduced and analysed a wide class of fractal lattices, 
which generalise the Sierpinski gaskets. We have presented methods for evaluating 
the fractal and spectral dimensions exactly: for particular lattice types we have obtained 
these dimensions in closed form. The spectral dimensions span the interval [l,  21. 
Furthermore, we have shown how to construct fractals whose dimensionalities interpo- 
late between given values. This allows us to obtain models with prescribed dimensions, 
tailored according to the experimental findings. 

We thank Professor G L Hofacker, Dr J Klafter and Dr G Zumofen for fruitful 
discussions and gratefully acknowledge grants from the Fonds der Chemischen Indus- 
trie and the Deutsche Forschungsgemeinschaft. 
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